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Conjugacy separability of any group of the class of one-relator groups given by the presentation
〈a, b; [am, bn] = 1〉(m,n > 1) is proven. The proof made used of theoretical combinatorial
group methods, namely the structure of amalgamated free products and some properties of the
subgroups and quotients of any group of the class of one-relator groups given above.

1. Introduction

A group G is conjugacy separable if for any two nonconjugate elements f and g of G there
exists a homomorphism ϕ of group G onto some finite group X such that the images fϕ and
gϕ of elements f and g are not conjugate in group X. It is clear that any conjugacy separable
group G is residually finite (i.e., recall that for any nonidentity element g ∈ G there exists a
homomorphism ϕ of group G onto some finite group X such that gϕ/= 1).

Conjugacy separability is related to the conjugacy problem, as the residual finiteness
is related to the word problem in the study of groups. In fact, Mostowski [1] proved that
finitely presented conjugacy separable groups have solvable conjugacy problem, just as
finitely presented residually finite groups have solvable word problem.

Since 1962 when Baumslag and Solitar [2] discovered the first examples of
nonresidually finite one-relator groups a lot of results establishing the residual finiteness
of various one-relator groups have appeared. It was also shown that some of such groups
are conjugacy separable. So, Dyer [2] has proved the conjugacy separability of any group
that is free product of free groups amalgamating cycle. In the same paper she proved an
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unpublished result of M. Armstrong on conjugacy separability of any one-relator group with
nontrivial center. The conjugacy separability of groups defined by relator of form (ambn)t and
(a−1blabm)s, where s > 1, was proved in [4] and [5], respectively. It should mention that up
to now it is not known whether there exists one-relator group that is residually finite but not
conjugacy separable.

In this paper we enlarge the class of conjugacy separable one-relator groups. Namely,
we prove here the following theorem:

Theorem 1.1. Any group Gmn = 〈a, b; [am, bn] = 1〉 where integersm and n are greater than 1, is
conjugacy separable.

We note that the assertion of Theorem is also valid when m = 1 or n = 1. Indeed, in
this case group Gmn is the generalized free product of two finitely generated abelian groups
with cyclic amalgamation and its conjugacy separability follows from the result of [3].

The residual finiteness of groups Gmn is well known; it follows, for example, from the
result of paper [6]. Groups Gmn are of some particular interest: they are centerless, torsion-
free,. . . Some properties of these groups were considered in [7, 8] where, in particular, the
description of their endomorphisms was given and their automorphisms group were studied
respectively. In this paper, the proofs made use of presentation of groupGmn as amalgamated
free product. This presentation will be the crucial tool in the proof of Theorem 1.1 and
because of this, in Section 1, we recall the Solitar theorem on the conjugacy of elements of
amalgamated free products and derive, for our special case, the criterion which is somewhat
simpler. In Section 2 some properties of separability of groups Gmn are established and in
Section 3 the proof of Theorem 1.1 will be completed.

We remind that conjugacy separability of groups Gmn can also be obtained using
[9]. However, the method in [9] presents any group Gmn as the result of adjoining roots to
conjugacy separable groups.

2. Preliminary Remarks on the Conjugacy in Amalgamated Free
Products

Let us recall some notions and properties concerned with the construction of free product
G = (A ∗ B; H) of groups A and B with amalgamated subgroupH.

Every element g ∈ G can be written in a form

g = x1x2 · · ·xr, (r � 1) (2.1)

where for any i = 1, 2, . . . , r element xi belongs to one of the free factors A or B and if r > 1
any successive xi and xi+1 do not belong to the same factor A or B (and therefore for any
i = 1, 2, . . . , r element xi does not belong to amalgamated subgroupH). Such form of element
g is called reduced.

In general, element g ∈ G can have different reduced forms, but if g = y1y2 · · ·ys is one
more reduced form of g, then r = s and, for any i = 1, 2, . . . , r, xi and yi belong to the same
factor A or B. The length l(g) of element g is then defined as the number r of the components
in a reduced form of g. Element g is called cyclically reduced if either l(g) = 1 or l(g) > 1 and
the first and the last components of its reduced form do not belong to the same factorA or B.
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If g = x1x2 · · ·xr is a reduced form of cyclically reduced element g then cyclic permutations
of element g are elements of form xixi+1 · · ·xrx1 · · ·xi−1, where i = 1, 2, . . . , r.

If X is a subgroup of a group Y we will say that elements a and b of Y are X-conjugate
if a = x−1bx, for some x ∈ X.

The Solitar criterion of conjugacy of elements of amalgamated free product of two
groups (Theorem 4.6 in [10]) can be formulated as follows.

Proposition 2.1. Let G = (A ∗ B;H) be the free product of groups A and B with amalgamated
subgroup H. Every element of G is conjugate to a cyclically reduced element. If lengths of two
cyclically reduced elements are nonequal then these elements are not conjugate in G. Let f and g
be cyclically reduced elements of G such that l(f) = l(g). Then

(1) if f ∈ A and f is not conjugate in A to any element of subgroup H, then f and g are
conjugate in group G if and only if g ∈ A and f and g are conjugate in A; similarly, if
f ∈ B and f is not conjugate in B to any element of subgroupH then f and g are conjugate
in group G if and only if g ∈ B and f and g are conjugate in B;

(2) if f ∈ H then f and g are conjugate in group G if and only if there exists a sequence of
elements

f = h0, h1, . . . , hn, hn+1 = g (2.2)

such that for any i = 0, 1, . . . , n hi ∈ H and elements hi and hi+1 are A-conjugate or
B-conjugate;

(3) If l(f) = l(g) > 1, then f and g are conjugate in group G if and only if element f is
H-conjugate to some cyclic permutation of g.

In the following special case assertion (2) of Proposition 2.1 became unnecessary.

Proposition 2.2. Let G = (A ∗ B;H) be the free product of groups A and B with amalgamated
subgroup H. Suppose that for any element f of A or B and for any element h of subgroup H, the
inclusion f−1hf ∈ H is valid if and only if elements f and h commute. If f and g are cyclically
reduced elements of G such that l(f) = l(g) = 1 then f and g are conjugate in group G if and only if
f and g belong to the same subgroup A or B and are conjugate in this subgroup.

Indeed, let elements f and g be conjugate in group G and let f belong to subgroup
A, say. If f is not conjugate in A to any element of subgroup H, then the desired assertion
is implied by assertion (1) of Proposition 2.1. Otherwise, we can assume that f ∈ H and by
assertion (2) of Proposition 2.1 there is a sequence of elements

f = h0, h1, . . . , hn, hn+1 = g, (2.3)

such that for any i = 0, 1, . . . , n hi ∈ H, and for suitable element xi belonging to one of the
subgroups A or B, the equality x−1

i hixi = hi+1 holds. Since for i = 0, 1, . . . , n − 1 the inclusion
x−1
i+1hi+1xi+1 ∈ H is valid, the hypothesis gives h0 = hn, that is, x−1

n fxn = g. This means that
elements f and g belong to that subgroup A or B which contains element xn and also are
conjugated in this subgroup.

Next, we describe more explicitly the situation arising in assertion (3) of
Proposition 2.1.
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Proposition 2.3. Let f = x1x2 · · ·xr and g = y1y2 · · ·yr be the reduced forms of elements f and g of
group G = (A ∗ B;H) where r > 1. Then f and g areH-conjugate if and only if there exist elements
h0, h1, h2, . . . , hr = h0 in subgroupH such that for any i = 1, 2, . . . , r, one has

xi = h−1i−1yihi. (2.4)

Proof. If for some elements h0, h1, h2, . . . , hr = h0 of subgroupH equalities (2.4) hold, then

f = x1x2 · · ·xr = h−10 y1h1 h−11 y2h2 · · · h−1r−1y2hr = h−10
(
y1y2 · · ·yr

)
hr = h−10 gh0. (2.5)

Conversely, by induction on r we prove that if for some h ∈ H the equality f = h−1gh
holds then there exists a sequence of elements h0, h1, h2, . . . , hr = h0 of subgroupH satisfying
the equalities (2.4) and such that h0 = h.

Rewriting the equality f = h−1gh in the form

x−1
r · · ·x−1

2 x
−1
1 h

−1y1y2 · · ·yrh = 1, (2.6)

we see that since the expression in the left part of it cannot be reduced, elements x1 and
y1 must be contained in the same subgroup A or B and element x−1

1 h
−1y1 must belong to

subgroup H. Denoting this element by h−11 , we have x1 = h−1y1h1. If r = 2 then the equality
above takes the form x−1

2 h
−1
1 y2h = 1, whence x2 = h−11 y2h. Therefore, setting h0 = h2 = h, we

obtain in that case the desired sequence.
If r > 2 let us rewrite the equality f = h−1gh in the form

h−1y1h1x2 · · ·xr = h−1y1y2 · · ·yrh. (2.7)

This implies that if we set f ′ = h−1h1x2 · · ·xr and g ′ = y2 · · ·yr , then f ′ = h−1g ′h. Since the
length of elements f ′ and g ′ is equal to r −1, then by induction, there exists a sequence h′1 = h,
h′2, . . . , h

′
r = h′1 of elements of subgroup H, such that h−1h1x2 = (h′1)

−1y2h′2 and for any i =
2, 3, . . . , r

xi =
(
h′i−1

)−1
yih

′
i. (2.8)

Since x2 = h−11 y2h
′
2, then setting hi = h′i for i = 2, 3, . . . , r, we obtain the desired sequence, and

induction is completed. Proposition 2.3 is proven.

We conclude this section with one more property of amalgamated free product.

Proposition 2.4. Let G = (A ∗ B;H) be the free product of groups A and B amalgamating subgroup
H whereH lies in the center of each of groups A and B. Then for any element f ∈ G not belonging to
subgroup A one has f−1Af ∩A = H.

Proof. In fact, since subgroupH coincides with the center of group G (see [10, page 211]), the
inclusion H ⊆ f−1Af ∩ A is obvious. Conversely, let element f−1af belong to subgroup A
where a ∈ A. Since f /∈A then either f ∈ B \H or l(f) > 1 and (without loss of generality) the
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first component of reduced form of f belongs to B. In any case the assumption a/∈H would
imply that l(f−1af) > 1. Thus, a ∈ H and therefore f−1af = a ∈ H.

3. Some Properties of Groups Gmn and of Their Certain Quotients

In what follows, our discussion will make use of the presentation of group Gmn as an
amalgamated free product of two groups. To describe such presentation, let H be the
subgroup of group Gmn, generated by elements c = am and d = bn. Also, let A denote
the subgroup of group Gmn generated by element a and subgroup H, and let B denote
the subgroup of group Gmn, generated by element b and subgroup H. Then it can be
immediately verified that H is the free abelian group with base c, d, group A is the free
product (〈a〉∗H; 〈am = c〉) of infinite cycle 〈a〉 and groupH with amalgamation 〈am〉, group
B is the free product (〈b〉 ∗H; 〈bn = d〉) of infinite cycle 〈b〉 and groupH with amalgamation
〈bn〉, and group Gmn is the free product (A ∗B;H) of groups A and B with amalgamationH.

The same decomposition is satisfiable for certain quotients of groups Gmn. Namely, for
any integer t > 1 let Gmn(t) be the group with presentation

〈
a, b; [am, bn] = 1, amt = bnt = 1

〉
(3.1)

and ρt the natural homomorphism of groups Gmn onto Gmn(t). Then it is easy to verify that
subgroupH(t) = Hρt of groupGmn(t) is isomorphic to the quotientH/Ht (where, as usually,
Ht consists of all elements ht, h ∈ H), subgroup A(t) = Aρt is the amalgamated free product
(〈a;amt = 1〉 ∗H(t);am = cHt) of cycle 〈a;amt = 1〉 of order mt and group H(t), subgroup
B(t) = Bρt is the amalgamated free product (〈b; bnt = 1〉 ∗H(t); bn = dHt) of cycle 〈b; bnt =
1〉 of order nt and group H(t), and group Gmn(t) is the amalgamated free product (A(t) ∗
B(t);H(t)).

These decompositions of groups Gmn and Gmn(t) are assumed everywhere below, and
such notions as free factor, reduced form, length of element and so on will refer to them.

Let us remark, at once, that since each of groups A(t) and B(t) is the amalgamated
free product of two finite groups and group Gmn(t) is the free product of groups A(t) and
B(t) with finite amalgamation, it follows from results of [3] that for every t, group Gmn(t) is
conjugacy separable. So, to prove the conjugacy separability of group Gmn it is enough, for
any nonconjugate elements f and g of Gmn, to find an integer t such that elements fρt and
gρt are nonconjugate in group Gmn(t).

Since in the decompositions of groups A and B as well, as of groups A(t) and B(t),
into amalgamated free product stated above the amalgamated subgroups are contained in
the centre of each free factor, by Proposition 2.4 we have the following proposition

Proposition 3.1. For any element g of group A (or B) not belonging to subgroup H the equality
g−1Hg ∩H = 〈c〉 (resp., g−1Hg ∩H = 〈d〉) holds. In particular, for any element g of group A or B
and for any element h of subgroupH element g−1hg belongs to subgroupH if and only if elements g
and h commute.

Similarly, for any element g of group A(t) (or B(t)) not belonging to subgroup H(t) the
equality g−1H(t)g ∩H(t) = 〈cHt〉 (resp., g−1H(t)g ∩H(t) = 〈dHt〉) holds. In particular, for any
elements g of group A(t) or B(t) and h of subgroup H(t), element g−1hg belongs to subgroup H(t)
if and only if elements g and h commute.
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Propositions 2.1, 2.2 and 3.1 lead to the following criterion for conjugacy of elements
of groups Gmn and Gmn(t):

Proposition 3.2. Let G be any of groups Gmn and Gmn(t). Every element of G is conjugate to
a cyclically reduced element. If lengths of two cyclically reduced elements are not equal then these
elements are not conjugate inG. Let f and g be cyclically reduced elements ofG such that l(f) = l(g).
Then

(1) If l(f) = l(g) = 1 then f and g are conjugate in group G if and only if f and g belong to
the same free factor and are conjugate in this factor.

(2) If l(f) = l(g) > 1 then f and g are conjugate in group G if and only if element f is
H-conjugate orH(t)-conjugate to some cyclic permutation of g.

We now consider some further properties of groups Gmn and Gmn(t). The following
assertion is easily checked.

Proposition 3.3. For any homomorphism ϕ of group Gmn onto a finite group X there exist an integer
t > 1 and a homomorphism ψ of group Gmn(t) onto group X such that ϕ = ρtψ.

Also, for any integers t > 1 and s > 1 such that t divides s there exists homomorphism
ϕ : Gmn(s) → Gmn(t) such that ρt = ρsϕ.

The same assertions are valid for groups A and B.

Proposition 3.4. For any element g of group A or B, if g does not belong to subgroupH then there
exists an integer t0 > 1 such that for any positive integer t, divisible by t0, element gρt does not belong
to subgroupHρt.

Proof. We will assume that g ∈ A; the case when g ∈ B can be treated similarly.
So, let element g ∈ A do not belong to subgroupH and let g = x1x2 · · ·xr be a reduced

form of g (in the decomposition of group A into amalgamated free product).
If r = 1 then element g belongs to subgroup 〈a〉 that is, g = ak for some integer k. Since

g /∈H, integer k is not divisible by m. Then for any integer t > 0, in group A(t), element gρt
of subgroup 〈a;amt = 1〉 cannot belong to the amalgamated subgroup (generated by element
am) of the decomposition of group A(t) and consequently cannot belong to the free factor
H(t) = Hρt.

Let r > 1. Every component xi of the reduced form of element g is either of form ak,
where integer k is not divisible by m, or of form ckdl where l /= 0. If integer t0 is chosen such
that the exponent l of any component xi of the second kind is not divisible by t0, then for any
t divisible by t0 the image xiρt = xiHt of such component will not belong to the amalgamated
subgroup of group A(t) (generated, let’s remind, by element cHt). Moreover, as above in
case r = 1, the images of components of the first kind will not belong to the amalgamated
subgroup. Therefore, the form

gρt =
(
x1ρt

)(
x2ρt

) · · · (xrρt) (3.2)

of element gρt is reduced in group A(t) and since r > 1, gρt does not belong to the free factor
H(t) = Hρt. The proposition is proven.

Proposition 3.4 obviously implies the the following proposition.
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Proposition 3.5. For any element g of group Gmn there exists an integer t0 > 1 such that for all
positive integer t, divisible by t0, the length of element gρt in group Gmn(t) coincides with the length
of element g in group Gmn.

Proposition 3.6. For any elements f and g of group A (or B) such that element f does not belong to
the double cosetHgH, there exists an integer t0 > 1 such that for any positive integer t, divisible by
t0, element fρt does not belong to the double cosetH(t)(gρt)H(t).

Proof. We can again consider only the case when elements f and g belong to subgroup A.
So, let us suppose that element f ∈ A does not belong to the double coset HgH. In view of
Proposition 3.4, it is enough to prove that there exists a homomorphism ϕ of A onto a finite
group X such that element fϕ of X does not belong to the double coset (Hϕ)(gϕ)(Hϕ).

To this end let’s consider the quotient group A = A/C of group A by its (central)
subgroup C = 〈c〉. The image xC of an element x ∈ A in group A will be denoted by x.

It is obvious that group A is the (ordinary) free product of the cyclic group X of
order m, generated by element a, and the infinite cycle Y , generated by d. The canonical
homomorphism of group A onto group A maps subgroup H onto subgroup Y and
consequently, the image of the double coset HgH is the double coset YgY . Since C � H,
the element f does not belong to this coset.

We can assume, without loss of generality, that any element f and g, if it is different
from identity, has reduced form the first and the last syllables of which do not belong to

subgroup Y . Every Y -syllable of these reduced forms is of form d
k
for some integer k /= 0.

Since the setM of all such exponents k is finite, we can choose an integer t > 0 such that for
any k ∈M the inequality t > 2|k| holds. Let’s denote by Ã the factor group of group A by the

normal closure of element d
t
. Group Ã is the free product of groups X and Y/Yt and since

different integers fromM are not relatively congruent and are not congruent to zero modulo
t, then the reduced forms of the images f̃ and g̃ of elements f and g in group Ã are the same
as in groupA. In particular, element f̃ does not belong to the double coset Y/Yt g̃ Y/Y t. Since
this coset consists of a finite number of elements and group Ã is residually finite, then there
exists a normal subgroup Ñ of finite index of group Ã such, that

f̃ /∈ (
Y/Ytg̃Y/Y t) · Ñ. (3.3)

If now θ is the product of the canonical homomorphisms of group A onto group A and of
group A onto group Ã and N is the full preimage by θ of subgroup Ñ, then N is a normal
subgroup of finite index of group A and f /∈ (HgH)N. Thus, the canonical homomorphism
ϕ of group A onto quotient group A/N has the required property and the proposition is
proven.

4. Proof of Theorem 1.1

We prove first the following proposition.

Proposition 4.1. If elements f and g of group Gmn such that l(f) = l(g) > 1 are not H-conjugate,
then for some integer t > 1, elements fρt and gρt of group Gmn(t) are notH(t)-conjugate.
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Proof. Let f = x1x2 · · ·xr and g = y1y2 · · ·yr be the reduced forms in group Gmn = (A ∗ B;H)
of elements f and g.

We remind (see Proposition 2.3) that elements f and g are H-conjugate if and only if
there exist elements h0, h1, h2, . . . , hr = h0 ofH such that for any i = 1, 2, . . . , r, we have

xi = h−1i−1yihi. (4.1)

It then follows, in particular, that for each i = 1, 2, . . . , r elements xi and yi should lie in the
same free factor A or B and define the same double coset modulo (H,H). So, we consider
separately some cases.

Case 1. Suppose that for some index i elements xi and yi lie in different free factors A and
B of group Gmn (and, certainly, are not in subgroup H). It follows from Proposition 3.4 that
there exists an integer t > 1 such that elements xiρt and yiρt do not belong to the same free
factorA(t) or B(t) of group Gmn(t) (and, as above, lie in free factors of this group). Hence, by
Proposition 2.3, in group Gmn(t) elements fρt and gρt are notH(t)-conjugate.

Case 2. Let now for any i = 1, 2, . . . , r elements xi and yi belong to the same subgroup A or
B and for some i element xi does not belong to the double coset HyiH. By Proposition 3.6,
there exists an integer t1 > 1 such that for any positive integer t, divisible by t1, element xiρt
is not in the double cosetH(t)(yiρt)H(t). From Proposition 3.5, there exist integers t2 > 1 and
t3 > 1 such that for any positive integer t divisible by t2 the length of element fρt in group
Gmn(t) is equal to r and for any positive integer t, divisible by t3, the length of element gτt in
group Gmn(t) is equal to r. Thus, if t = t1t2t3 then in group Gmn(t), elements fρt and gρt have
the reduced forms

(
x1ρt

)(
x2ρt

) · · · (xrρt), (
y1ρt

)(
y2ρt

) · · · (yrρt), (4.2)

respectively and element xiρt is not in the double coset H(t)(yiρt)H(t). Again, by
Proposition 2.3 these elements are notH(t)-conjugate.

Case 3. We now consider the case, when for any i = 1, 2, . . . , r elements xi and yi lie in the
same free factor A or B and also determine the same double coset modulo (H,H). We prove
some lemmas.

Lemma 4.2. Let elements x and y belong to one of the groups A or B and do not belong to the
subgroupH and x ∈ HyH, that is,

x = cαdβycγdδ (4.3)

for some integers α, β, γ and δ. If elements x and y belong to groupA, then integers α+ γ , β and δ are
uniquely determined by the equality (4.3). If elements x and y belong to group B, then integers β + δ,
α and γ are uniquely determined by equality (4.3).

Proof. Let elements x and y belong to subgroup A and let x = cα1dβ1ycγ1dδ1 and x =
cα2dβ2ycγ2dδ2 for some integers α1, β1, γ1, δ1, α2, β2, γ2 and δ2. Rewriting the equality
cα1dβ1ycγ1dδ1 = cα2dβ2ycγ2dδ2 as y−1cα1−α2dβ1−β2y = cγ2−γ1dδ2−δ1 , then, by Proposition 3.1, we
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conclude that cα1−α2dβ1−β2 = cγ2−γ1dδ2−δ1 and also that this element should belong to subgroup
〈c〉, that is, β1 − β2 = δ2 − δ1 = 0. So, we have cα1−α2 = cγ2−γ1 and since the order of element c is
infinite, then α1 − α2 = γ2 − γ1.

Thus, β1 = β2, δ1 = δ2 and α1 + γ1 = α2 + γ2 as it was required. The case when elements
x and y belong to group B is esteemed similarly.

Lemma 4.3. Let elements x and y belong to one of groupsA(t) or B(t) and do not belong to subgroup
H(t) and x ∈ H(t)yH(t), that is,

x =
(
cHt)α(dHt)βy(cHt)γ(dHt)δ (4.4)

for some integers α, β, γ and δ. If elements x and y belong to group A(t), then integers α + γ , β and
δ are uniquely determined modulo t by equality (4.4). If elements x and y belong to group B(t), then
integers β + δ, α and γ are uniquely determined modulo t by equality (4.4).

The proof of Lemma 4.3 is completely similar to that of Lemma 4.2.

Lemma 4.4. Let f = x1x2 · · ·xr and g = y1y2 · · ·yr be reduced elements of group Gmn, where r > 1
and let for every i = 1, 2, . . . , r the equality xi = uiyivi holds, for some elements ui and vi of subgroup
H. Then there exists at most one sequence h0, h1, h2, . . . , hr of elements of subgroupH such that for
any i = 1, 2, . . . , r

xi = h−1i−1yihi. (4.5)

Moreover, if ui = cαidβi and vi = cγidδi for some integers αi, βi, γi and δi (i = 1, 2, . . . , r) and
x1, y1 ∈ A, then such sequence exists if, and only if, for any i, 1 < i < r,

αi + αi+1 + γi−1 + γi = 0, if i is odd,

βi + βi+1 + δi−1 + δi = 0, if i is even.
(4.6)

Proof. We suppose first that the sequence h0, h1, h2, . . . , hr of elements of subgroup H
satisfying equality (4.5) exists, and let’s write hi = cμidνi , for some integers μi and νi.

Then, since for any i = 1, 2, . . . , r the equality h−1i−1yihi = uiyivi holds, we have

y−1
i (hi−1ui)yi = hiv−1

i . (4.7)

Since r > 1, then every element yi, belonging to one of the subgroups A or B, does not lie
in subgroup H, and consequently, from Proposition 3.1, for any i = 1, 2, . . . , r, we have the
equality hi−1ui = hiv

−1
i . Substituting the expressions of elements hi, ui and vi, we have for

every i = 1, 2, . . . , rcμi−1+αidνi−1+βi = cμi−γidνi−δi and hence we obtain the system of numeric
equations

μi−1 + αi = μi − γi, νi−1 + βi = νi − δi (i = 1, 2, . . . , r). (4.8)

Since by (4.7) for every i = 1, 2, . . . , r element hiv−1
i belongs to the intersection y−1

i Hyi ∩H
and, by supposition, elements y1, y3, . . . belong to subgroupA and elements y2, y4, . . . belong
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to subgroup B, then from Proposition 3.1, it follows that for odd i, we should have hi−1ui =
hiv

−1
i ∈ 〈c〉, and for even i, we should have hi−1ui = hiv

−1
i ∈ 〈d〉. It means that for every odd

i (i = 1, 2, . . . , r) we have the equalities νi−1 + βi = 0 and νi − δi = 0, and for every even i
(i = 1, 2, . . . , r) we have the equalities μi−1 + αi = 0 and μi − γi = 0.

Hence, the values of the integers μi and νi are determined uniquely. Namely,

μi =

⎧⎨
⎩
γi if i is even and 2 � i � r,

−αi+1 if i is odd and 1 � i � r − 1,
(4.9)

νi =

⎧⎨
⎩
−βi+1 if i is even and 0 � i � r − 1,

δi if i is odd and 1 � i � r.
(4.10)

Moreover, from equalities (4.8) it follows, that

μ0 = −(α1 + α2 + γ1),
νr = βr + δr−1 + δr if r is even,

μr = αr + γr−1 + γr if r is odd.

(4.11)

Thus, the statement that there can exist at most one sequence of elements h0, h1,
h2, . . . , hr of subgroupH satisfying equalities (4.5) is demonstrated.

Substituting the value μi−1 = γi−1 and μi = −αi+1 defined in (4.9) in the equalities μi−1 +
αi = μi − γi of system (4.8), where 1 < i < r and i is odd, we obtain αi + αi+1 + γi−1 + γi = 0.
Similarly, substituting the value νi−1 = δi−1 and νi = −βi+1 defined in (4.10) in the equalities
νi−1+βi = νi−δi of systems (4.8), where 1 < i < r and i is even, we obtain βi+βi+1+δi−1+δi = 0.

Thus, under the existence in subgroup H of sequence h0, h1, h2, . . . , hr of elements
satisfying (4.5), conditions (4.6) are satisfied.

Conversely, suppose conditions (4.6) are satisfied. Let

h0 = c−(α1+α2+γ1)d−β1 (4.12)

and for all indexes i such that 1 � i < r, we set

hi =

⎧⎨
⎩
cγid−βi+1 if i is even,

c−αi+1dδi if i is odd.
(4.13)

At last, for i = r we set

hr =

⎧⎨
⎩
cγrdβr+δr−1+δr if r is even,

cαr+γr−1+γr dδr if r is odd.
(4.14)
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Let us show that, the so-defined sequence of elements h0, h1, h2, . . . , hr really fits to
equalities (4.5).

If i = 1, using the permutability of elements c and y1 we have

h−10 y1h1 = c
α1+α2+γ1dβ1y1c

−α2dδ1 = cα1dβ1y1cγ1dδ1 = x1. (4.15)

If 1 < i < r and integer i is even, using the equality βi + βi+1 + δi−1 + δi = 0 and
permutability of elements d and yi, we have

h−1i−1yihi = c
αid−δi−1yicγid−βi+1 = cαiyicγid−(δi−1+βi+1) = cαiyicγidβi+δi = cαidβiyicγidδi = xi. (4.16)

If 1 < i < r and integer i is odd, using the equality αi+αi+1+γi−1+γi = 0 and permutability
of elements c and yi, we have

h−1i−1yihi = c
−γi−1dβiyic−αi+1dδi = c−(γi−1+αi+1)dβiyidδi = cαi+γidβiyidδi = cαidβiyicγidδi = xi. (4.17)

If integer r is even, then

h−1r−1yrhr = c
αrd−δr−1yrcγrdβr+δr−1+δr = cαrdβryrcγrdδr = xr, (4.18)

and if r is odd, then

h−1r−1yrhr = c
−γr−1dβryrcαr+γr−1+γr dδr = cαrdβryrcγrdδr = xr. (4.19)

So, Lemma 4.4 is completely demonstrated.

Similar argument gives the following lemma.

Lemma 4.5. Let f = x1x2 · · ·xr and g = y1y2 · · ·yr be reduced elements of group Gmn(t), where
r > 1, and let for every i = 1, 2, . . . , r the equality xi = uiyivi takes place, for some elements ui and vi
of subgroup H(t). Then there exists at most one sequence h0, h1, h2, . . . , hr of elements of subgroup
H(t) such that for any i = 1, 2, . . . , r, one has

xi = h−1i−1yihi. (4.20)

Moreover, if ui = (cHt)αi(dHt)βi and vi = (cHt)γi(dHt)δi for some integers αi, βi, γi and δi (i =
1, 2, . . . , r) and x1, y1 ∈ A(t), then such sequence exists if and only if for any integer i, 1 < i < r, one
has

αi + αi+1 + γi−1 + γi ≡ 0 (mod t) if i is odd,

βi + βi+1 + δi−1 + δi ≡ 0 (mod t) if i is even.
(4.21)

We can now end the consideration of Case 3 and thus complete the proof of
Proposition 4.1.
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By Proposition 2.3, elements f and g are H-conjugate if and only if their cyclic
permutation x2 · · ·xrx1 and y2 · · ·yry1 are H-conjugate. Therefore, we can suppose, without
loss of generality, that elements x1 and y1 belong to subgroup A.

By supposition, for every i = 1, 2, . . . , r there exist integers αi, βi, γi and δi such that

xi = cαidβiyicγidδi . (4.22)

If integer i, 1 < i < r, is even, then yi ∈ B, yi−1, yi+1 ∈ A and consequently, from
Lemma 4.2, integers βi + δi, δi−1 and βi+1 do not depend from the particular expressions of
the elements xi (in the form xi = uyiv, where u, v ∈ H), and these integers are uniquely
determined by the sequences x1, x2, . . . , xr and y1, y2, . . . , yr . Similarly, for any odd i, 1 < i < r,
integers αi + γi, γi−1 and αi+1 are uniquely determined by these sequences. It means, in turn,
that the satisfiability of conditions (4.6) of Lemma 4.4 depends only on the sequences x1,
x2, . . . , xr and y1, y2, . . . , yr .

Let’s now conditions (4.6) of Lemma 4.4 are not satisfied, that is, either for some even
i, 1 < i < r, the sum βi + βi+1 + δi−1 + δi is different from zero, or for some odd i, 1 < i < r,
the sum αi + αi+1 + γi−1 + γi is different from zero. Then it is possible to find an integer t1 > 1,
not dividing the respective sum. Let’s also choose, according to Proposition 3.5, the integers
t2 > 1 and t3 > 1 such that for all positive integer t, divisible by t2, the length of element fρt in
group Gmn(t) is equal to r and for all positive integer t, divisible by t3, the length of element
gρt in group Gmn(t) is equal to r. Then if t = t1t2t3, in group Gmn(t), elements fρt and gρt
have reduced forms

(
x1ρt

)(
x2ρt

) · · · (xrρt), (
y1ρt

)(
y2ρt

) · · · (yrρt), (4.23)

respectively. Further, for every i = 1, 2, . . . , r,

xiρt =
(
cHt)αi(dHt)βi(yiρt)(cHt)γi(dHt)δi . (4.24)

From Lemma 4.3 and the selection of integer t1 it follows that for elements fρt and
gρt, conditions (4.21) of Lemma 4.5 are not satisfied. Therefore from this lemma and
Proposition 2.3, elements fρt and gρt are notH(t)-conjugate in group Gmn(t).

Let now the reduced forms of elements f and g satisfy conditions (4.6) of Lemma 4.4.
Then according to this lemma, in subgroup H there exists the only sequence of elements h0,
h1, h2, . . . , hr such that for any i = 1, 2, . . . , r, we have xi = h−1i−1yihi. Since elements f and g are
not H-conjugate, then elements h0 and hr should be different. Since group Gmn is residually
finite, by Proposition 3.3 there exists an integer t1 > 1 such that h0ρt1 /=hrρt1 . Let’s choose
one more integer t2 such that in group Gmn(t2) elements fρt2 and gρt2 have length r. Then if
t = t1t2, in group Gmn(t), h0ρt /=hrρt, elements fρt and gρt have reduced forms

(
x1ρt

)(
x2ρt

) · · · (xrρt), (
y1ρt

)(
y2ρt

) · · · (yrρt), (4.25)

respectively and for every i = 1, 2, . . . , r

xiρt =
(
cHt)αi(dHt)βi(yiρt)(cHt)γi(dHt)δi . (4.26)
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Moreover, in group Gmn(t), for any i = 1, 2, . . . , r, the equality

xiρt =
(
hi−1ρt

)−1(
yiρt

)(
hiρt

)
(4.27)

holds.
Since the sequence h0ρt, h1ρt, h2ρt, . . . , hrρt is, by Lemma 4.5, the unique sequence of

elements of subgroup H(t) satisfying these equalities, then from Proposition 2.3, elements
fτt and gτt are notH(t)-conjugate in group Gmn(t).

Hence Proposition 4.1 is completely demonstrated.

We now proceed directly to the proof of Theorem 1.1.
As remarked above, for any t > 1, group Gmn(t) is conjugacy separable. Therefore, for

the proof of the Theorem it is enough to show that for any two nonconjugate in group Gmn

elements f and g of groupGmn, there exists an integer t > 1 such that elements fρt and gρt are
not conjugate in groupGmn(t). To this end wemake use of the conjugacy criterion of elements
of groups Gmn and Gmn(t) given in Proposition 3.2.

So, let f = x1x2 · · ·xr and g = y1y2 · · ·yr be the reduced forms in group Gmn =
(A ∗ B; H) of two nonconjugate in group Gmn elements f and g. By Proposition 3.2 we can
assume that elements f and g are cyclically reduced. In accordance with this proposition we
must consider separately some cases.

Case 1 (l(f)/= l(g)). From Proposition 3.5, there exists an integer t1 > 1 such that for any
positive integer t, divisible by t1, the length of element fρt in group Gmn(t) coincides with
the length of element f in group Gmn. Similarly, there exists integer t2 > 1 such that for any
positive integer t, divisible by t2, the length of element gρt in groupGmn(t) coincides with the
length of element g in group Gmn. Thus, if t = t1t2 elements fρt and gρt of group Gmn(t) are,
as it is easy to see, cyclically reduced and have different length. Hence, by Proposition 3.2,
these elements are not conjugate in this group. Thus integer t is the required.

Case 2 (l(f) = l(g) = 1). In this case each of these elements belongs to one of the subgroupsA
or B. Suppose first that both elements lie in the same of these subgroups; let it be, for instance,
subgroup A. Since elements f and g are not conjugate in group A and group A is conjugacy
separable [3], then by Proposition 3.3 there exists an integer t > 1 such that in group A(t)
elements fρt and gρt are not conjugate. Proposition 3.2 now implies that elements fρt and
gρt are not conjugate in group Gmn(t).

Let now element f belongs to subgroupA, element g belongs to subgroup B and these
elements do not belong to subgroup H. By Proposition 3.4, there exist integers t1 > 1 and
t2 > 1 such that for any positive integer t, divisible by t1, element fρt does not belong to
subgroup Hρt, and for any positive integer t, divisible by t2, element gρt does not belong
to subgroup Hρt. Then if t = t1t2, Proposition 3.2 implies that elements fρt and gρt are not
conjugate in group Gmn(t).

Case 3 (l(f) = l(g) > 1). Let gi = yiyi+1 · · ·yry1 · · ·yi−1 (i = 1, 2, . . . , r) be all the cyclic
permutations of element g. Since elements g and gi are conjugate and elements f and g are
not conjugate, element f is notH-conjugate to any of elements g1, g2, . . . , gr . It follows from
Proposition 4.1 that for every i = 1, 2, . . . , r, there exists an integer ti > 1 such that elements
fρti and giρti are notH(ti)-conjugate in group Gmn(ti). Let also integer t0 > 1 be chosen such
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that for all positive integer t, divisible by t0, elements fρt and gρt have length r in group
Gmn(t). Then if t = t0t1 · · · tr in group Gmn(t), elements fρt and giρt have reduced forms

(
x1ρt

)(
x2ρt

) · · · (xrρt)(
yiρt

)(
yi+1ρt

) · · · (yrρt)(y1ρt) · · · (yi−1ρt), (4.28)

respectively. Furthermore, elements fρt and giρt are not H(t)-conjugate in group Gmn(t).
Since an arbitrary cyclic permutation of element gρt coincides with some element giρt, then
from Proposition 3.2 it follows that elements fρt and gρt are not conjugate in group Gmn(t).

The proof of Theorem is now complete.
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